

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 17

Effective Big Data Storage Framework for
Cloud Memory Management

Jaai Arankalle, Shubhangi Bagade, Saee Joshi, Rutuja Limaye

U.G. Student, Department of Computer Engineering, Siddhant College of Engineering, Pune, Maharashtra, India

ABSTRACT: Big sensing data is extensively used in both industry and scientific research applications where the data
is generated with huge volume. Cloud computing provides a best platform for big sensing data processing and storage.
It moves around four important areas of analytics and Big Data, namely (i) data management and supporting
architectures; (ii) model development and scoring;(iii) visualization and user interaction; and (iv) business models.
However, the storage pressure on cloud storage system caused by the explosive growth of data is growing by the day,
especially a vast amount of redundant data waste a lot of storage space. Data deduplication can effectively reduce the
size of data by eliminating redundant data in storage systems. In cloud data storage, the deduplication technology plays
a major role. In the deduplication technology, data are broken down into multiple pieces called “chunks”. The Two
Thresholds Two Divisors (TTTD) algorithm is used for chunking mechanism and is used for controlling the variations
of the chunk-size.

KEYWORDS:cloud computing, data chunk, data compression, big sensing data, scalability.

I. INTRODUCTION

It is becoming a big necessity that we need to process big data from multiple sensing systems. Cloud storage systems
are able to give low-cost, convenient and good network storage service for users, which makes them more popular.
However, the storage pressure on cloud storage system caused by the huge growth of data is growing by the day,
especially a vast amount of repetitive waste plenty of storage space. Data deduplication can operatively reduce the size
of data by excluding repetitive data in storage systems. However, current researches on data deduplication, which
mainly concentrate on the static scenes such as the backup and archive systems, are not suitable for cloud storage
system due to the dynamic nature of data[4]. Deduplication applied in cloud storage systems can minimize the size of
data and save the network bandwidth, the dynamicity of data in cloud storage systems are different from backup and
archive systems, which brings different approaches for the study of data deduplication in cloud storage systems. Here,
the dynamic characteristics of data are caused by dynamic sharing between multiple users. For example, the same data
accessed by different users and the access frequency of different data at the same time is different, the access frequency
of the same data changes overtime and duplicated data appears again in different (storage nodes)nodes for data
modification by users[6].There are many different deduplication approaches depending on the range of deduplication
(locally or globally), the position of deduplication (at the client or server side), the time of deduplication (inline or
offline), and the granularity of deduplication (file-level or chunk-level). The process of deduplication mainly comprises
four steps: (1) chunking; (2) calculating fingerprint; (3) fingerprint lookup (finding out the redundancy by fingerprint
comparison); storing new data[6]. Chunking can break a file into small parts called chunks for detecting more
redundancy. There are several typical chunking strategies of data deduplication [6], such as whole-file chunking, fixed-
size chunking, content-defined chunking, and Two Thresholds Two Divisors(TTTD) chunking.

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 18

II. SYSTEM MODEL

A. REGISTRATION AND AUTHENTICATION:Registration page consist of details as follows:
i) First name
ii) Last name
iii) Gender
iv) Mobile number
v) Email id
vi) Verify email
vii) Send message

Authentication is done through email id. First user has to register and create id and verified email does the work of
checking whether the user is registered or not. When user will send message to server and if the user is registered the
message will be successfully sent to server. For security purpose the server will send password to user’s mail after
registration.

B. UPLOADER & DOWNLOADER:
In the uploader module, first we will upload the file which we want to compress. The compressed file will be
uploaded on cloud as well as saved on client side. If the client machine gets corrupt then the cop of compressed file will
be available on cloud.
The downloader module does the work of downloading the file stored on cloud. The uploaded file which is in a
compressed form and at the time of downloading the file will be in a decompressed form which will be made available
to user in its original form.

C. COMPRESSION MODULE:
In compression module, the file which is to be uploaded on cloud is first divided into chunks using TTTD algorithm by
using the following formula:
Chunk size= (length % number of cores == 0 ? length % number of cores | length / number of cores + 1).
Where, length is the size of file
These compressed chunks will be integrated and the whole file will be uploaded on cloud.

D. DECOMPRESSION MODULE:The uploaded file on cloud if it is requested by the user then the user can

download it and it will be available in a decompressed form.

E. PERFORMANCE ANALYZER:Performance Analyzer gives the comparison on the basis of time and memory

for the file before compression and after compression.

III. OPPORTUNITIES FOR COMPRESSION

The data accessed by real-world applications show significant amount of redundancy which provides opportunity for
compression. Such redundancy may arise due to use of constants, nature of program inputs and operations such as
assignment and copying. For example, several applications use a common value for initializing a large array and in an
image processing application, multiple adjacent pixels may have the same color. Similarly, on using memcpy() two
copies of data may be stored in the cache. Due to these factors, some benchmarks can contain up to 98 percent of
duplicated blocks. Further, it has been shown that if each unique memory value is stored exactly once in the cache,
compression ratios beyond 16_ can be achieved. However, due to practical considerations (discussed below), most
practical techniques achieve compression ratios of less than 2_, although a few techniques achieve compression ratios
of 3-4_. In several cases, programmers provision large size data types to handle worst-case scenario, while most values
can fit in a smaller data type, for example, a four-byte integer may store only a one-byte value. Such values, referred to
as narrow-width values, can be easily compressed. Similarly, ‘special patterns’, such as data values where all the bits
are either zero or one, can be coded using special flags or smaller number of bits. Further, in many cases, the

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 19

differences between values stored within the cache line may be small and hence, they can be represented in a
compressed form using a base value and an array of differences.[2]

A. FACTORS AND TRADEOFFS:
The efficacy of compression approach depends on several factors. In what follows, we discuss some of these factors.
Compressibility of Data. Different applications and data have different compressibility, which can greatly affect the
improvements obtained from the compression approach. In case of incompressible data or inefficient compression
algorithm, the size of a compressed block may even be larger than that of uncompressed block due to use of metadata
etc. For such cases, storing data in uncompressed form is beneficial. For example, compression approach exploits data
redundancy, and hence, it may not benefit systems which use encrypted data since data encryption techniques introduce
randomness and reduce data redundancy Larger block sizes are expected to compress well due to higher redundancy,
however, at large sizes, access to even a single sub block will require decompressing the whole block. On the other
hand, for some compression algorithms such as zero-content (ZC) detection, use of smaller blocks may lead to larger
compression ratios since finding certain patterns may be easier. However, use of smaller block sizes may lead to larger
overhead of metadata.

B. TABLE OF FACTOR :

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 20

IV. SYSTEM ARCHITECTURE

For fast processing data is divided into chunks or segments. Chunking mechanism is used to divide the data into small
parts at the server side so that less time will be used for uploading the data .Chunking is use to increase faster
processing for evaluating frequent data transmission on cloud . Main problem is time and space management so to
reduce this memory optimization Dynamic load balancing is applied.

V. ALGORITHM

A. TTTD ALGORITHM :The maximum and minimum thresholds are used to eliminate very large-sized and very
small-sized chunks in order to control the variations of chunk-size. The main divisor plays the same role as the
BSW algorithm and can be used to make the chunk-size close to our expected chunk-size. In usual, the value of the
second divisor is half of the main divisor. Due to its higher probability, second divisor assists algorithm to
determine a backup breakpoint for chunks in case the algorithm cannot find any breakpoint by main divisor.
According to the research, we list these four parameters and their optimal values when considering the expected
chunk-size is 1000 bytes.[5]

(1) The algorithm shifts one byte at one time and computes the hash value.
(2) If the size from last breakpoint to current position is larger than minimum threshold, it starts to determine the
breakpoint by second and main divisors.
(3) Before the algorithm reaches the maximum threshold, if it can find a breakpoint by main divisor, then uses it as the
chunk boundary. The sliding window starts at this position and repeats the computation and comparison until the end of
file.
(4) When the algorithm reaches the maximum threshold, it uses the backup breakpoint if it found any one, otherwise
use the maximum threshold as a breakpoint.

B. HUFFMAN ALGORITHM : Huffman Encoding Algorithms use the probability distribution of the alphabet of the
source to develop the code words for symbols. The frequency distribution of all the characters of the source is
calculated in order to calculate the probability distribution. According to the probabilities, the code words are assigned.
Shorter code words for higher probabilities and longer code words for smaller probabilities are assigned. For this task a
binary tree is created using the symbols as leaves according to their probabilities and paths of those are taken as the
code words. Two families of Huffman Encoding have been proposed: Static Huffman Algorithms and Adaptive

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 21

Huffman Algorithms. Static Huffman Algorithms calculate the frequencies first and then generate a common tree for
both the compression and decompression processes. Details of this tree should be saved or transferred with the
compressed file. The Adaptive Huffman algorithms develop the tree while calculating the frequencies and there will be
two trees in both the processes. In this approach, a tree is generated with the flag symbol in the beginning and is
updated as the next symbol is read.

VI. EXPERIMENTAL RESULT

A. DATASET :

B. COMPUTATIONAL NODE :

C. RESULT:

Serial
no:

Document Extension Size

1. text .txt 4KB
2. PDF .pdf 184KB
3. Application .exe 1.5MB
4. MS Word .doc 35KB
5. MS Excel .xls 97KB
6. Latex .tex 15KB
7. Image .jpeg 25KB
8. Audio .mp3 10MB
9. Video .mp4 51MB

 Node 1
(Server)

Node 2
(Client
1)

Node 3
(Client 3)

Proces
sor

I3 I5 Pentium

RAM 8 GB 4 GB 2 GB
Speed 2.0GHz 2.0GHz 1.0GHz

Java 7 7 7
OS Windows

10
Windows
10

Windows 7

Hard
disk

1 TB 1 TB 500

http://www.ijircce.com
http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Special Issue 6, July 2017

Copyright to IJIRCCE www.ijircce.com 22

D. GRAPH:

VII. CONCLUSION

In this paper, we have completed a novel scalable data compression based on similarity calculation among the
partitioned data chunks with Cloud computing. For proper granularity, an effective and efficient chunking algorithm is
a must. If the data is chunked accurately, it increases the throughput and the net deduplication performance. The file-
level chunking method is efficient for small files deduplication, but not relevant for a big file environment or a backup
environment. TTTD-S algorithm, not only successfully achieves the significant improvements in running time and
average chunk-size, but also obtains the better controls on the variations of chunk-size by reducing the large-sized
chunks.

REFERENCES

1. .Chi Yang, Jinjun Chen, “A Scalable Data Chunk Similarity based Compression Approach for Efficient Big Sensing Data Processing Cloud”,
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, February 2016.

2. Sparsh Mittal, Member, IEEE and Jeffrey S. Vetter, Senior Member, IEEE ”A Survey Of Architectural Approaches for Data Compression in
Cache and Main Memory Systems” IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016.

3. Santoshi Tsuchiya, Yoshinori Sakamoto, Yuichi Tsuchimoto, Vivian Lee, “Big Data Processing on Cloud Environment”, FUJITSU Science and
Technology Journal, 48(2):159-168, 2012.

4. Venish and K. Siva Sankar, “Study of chunking algorithm in Data Deduplication”, Proceedings of the International Conference on Soft
Computing Systems, Advances in Intelligent Systems and Computing 398, DOI 10.1007/978-81-322-2674-1_2.

5. Chang, BingChun, "A Running Time Improvement for Two Thresholds Two Divisors Algorithm" (2009).Master's Projects. Paper 42.
6. Xiaolong Xu, Qun Tu, “Data deduplication mechanism for cloud storage systems”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING VOL:25 NO:7 SEPTEMBER, 2015
7. Marcos D. Assunção a, Rodrigo N. Calheiros b, Silvia Bianchi c, “ Big data computing and clouds : Trends and future directions”,Journal of

parallel and distributed computing,79-80(2015) 3-15
8. Amit Jain, a Kamaljit I. Lakhtariab, Prateek Srivastava,” A Comparative Study of Lossless Compression Algorithm on Text Data”,Proc. of Int.

Conf. on Advances in Computer Science, AETACS
9. S.R. KODITUWAKKU,”COMPARISON OF LOSSLESS DATA COMPRESSION ALGORITHMS FOR TEXT DATA”, S.R. Kodituwakku

et. al. / Indian Journal of Computer Science and Engineering Vol 1 No 4 416-425.
10. K. Tanaka and A. Matsuda, “Static energy reduction in cache memories using data compression,” in Proc. IEEE TENCON, 2006,pp. 1–4.
11. S. Roy, R. Kumar, and M. Prvulovic, “Improving system performance with compressed memory,” in Proc. Int. Parallel Distrib. Process. Symp.,

2001, pp. 7–13.
12. J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and evaluation of a selective compressed memory system,” in Proc. Int. Conf. Comput.
 Des., 1999, pp. 184–191.

0

20

40

DB 1 DB 2 DB 3

Memory 1

Memory 2

http://www.ijircce.com
http://www.ijircce.com

